An exploratory analysis on poverty and social inequality in Montreal neighbourhoods. Tidyverse, Leaflet, SF, Cansim and Cancensus are the main packages used in the analysis.

SENIORS(65+) IN POVERTY (LICO-AT)

Low-income Cut-offs (LICOs) refer to an income threshold, below which economic families or persons would likely have spent a larger share of their income than average on the necessities of food, shelter and clothing[1]. More specifically, the thresholds represented income levels at which these families or persons were expected to spend 20 percentage points or more of their income than average on food, shelter and clothing.

There are two LICO income concepts: The LICOs before-tax (LICO-BT) use total income while the LICOs after-tax (LICO-AT) use after-tax income.

The LICO-BT are based on the 1992 Family Expenditure Survey, which estimated that families spent 35% of total income on average on necessities of food, clothing and shelter. The LICO-BT thresholds were thus set to income levels where 55% of total income would be spent on these necessities. For the LICO-AT, it was estimated that families spent 43% of their after-tax income on average on necessities of food, clothing and shelter. The LICO-AT thresholds were thus set to income levels where 63% of after-tax income would be spent on these necessities.

LICO is the most established measure of poverty in Canada. It is the main poverty measure used by the federal government and is the most widely-used measure in general across Canada [2].

In the census LICO-AT values are represented as percentage values for census tracts.

To create analyses for different geographic units you can go through the Wikipeadia page on census geographic units of Canada

mtl_lico_at_65<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lico_at="v_CA16_2582"), geo_format="sf",level="CT") 
head(mtl_lico_at_65)
## Simple feature collection with 6 features and 14 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: -73.63785 ymin: 45.45439 xmax: -73.56055 ymax: 45.5608
## geographic CRS: WGS 84
##   Population Households     GeoUID Type PR_UID Shape Area Dwellings
## 1       3161       1756 4620149.00   CT     24    0.13819      1924
## 2       5217       2756 4620185.00   CT     24    0.39316      2982
## 3       3587       1492 4620222.00   CT     24    0.19894      1634
## 4       4359       1506 4620117.00   CT     24    0.27047      1614
## 5       5729       2592 4620124.00   CT     24    0.37836      2899
## 6       2847       1524 4620306.00   CT     24    0.22301      1635
##   Adjusted Population (previous Census) CMA_UID CSD_UID CD_UID Region Name
## 1                                  3141   24462 2466023   2466    Montréal
## 2                                  5262   24462 2466023   2466    Montréal
## 3                                  3757   24462 2466023   2466    Montréal
## 4                                  4478   24462 2466023   2466    Montréal
## 5                                  5834   24462 2466023   2466    Montréal
## 6                                  2799   24462 2466023   2466    Montréal
##   Area (sq km) lico_at                       geometry
## 1      0.13819    17.5 MULTIPOLYGON (((-73.56392 4...
## 2      0.39316    22.4 MULTIPOLYGON (((-73.57216 4...
## 3      0.19894    21.0 MULTIPOLYGON (((-73.63158 4...
## 4      0.27047    20.0 MULTIPOLYGON (((-73.63313 4...
## 5      0.37836    24.1 MULTIPOLYGON (((-73.61896 4...
## 6      0.22301    19.4 MULTIPOLYGON (((-73.56348 4...

Mean percentage value for seniors living below lico-at:

## [1] 18.50472

Maximum percentage of seniors living below lico-at in a region:

## [1] 65.3

Minimum percentage of seniors living below lico-at in a region:

## [1] 2.4

SENIORS(65+) IN POVERTY (LIM-AT)

The concept underlying the LIM is that all persons in a household have low income if their adjusted household income falls below half of the median adjusted income. The household income is adjusted by an equivalence scale to take economies of scale into account.

The LIM-AT is more an indicator of social inequality rather than that of poverty since it is a comparison. While LICO is Canada specific, LIM is used across all OECD countries.

mtl_lim_at_65<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lim_at="v_CA16_2552"), geo_format="sf",level="DA") 

Mean percentage value for seniors lim-at:

## [1] 23.71518

Max percentage value for seniors lim-at:

## [1] 100

Min percentage value for seniors lim-at:

## [1] 0

CHILDREN(17<) IN POVERTY (LICO-AT)

mtl<-get_census("CA16",regions=list(CSD="2466023"),geo_format="sf",level="CT") 
mtl_lico_at_17<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lico_at="v_CA16_2573"), geo_format="sf",level="CT") 
head(mtl_lico_at_17)
## Simple feature collection with 6 features and 14 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: -73.63785 ymin: 45.45439 xmax: -73.56055 ymax: 45.5608
## geographic CRS: WGS 84
##   Population Households     GeoUID Type PR_UID Shape Area Dwellings
## 1       3161       1756 4620149.00   CT     24    0.13819      1924
## 2       5217       2756 4620185.00   CT     24    0.39316      2982
## 3       3587       1492 4620222.00   CT     24    0.19894      1634
## 4       4359       1506 4620117.00   CT     24    0.27047      1614
## 5       5729       2592 4620124.00   CT     24    0.37836      2899
## 6       2847       1524 4620306.00   CT     24    0.22301      1635
##   Adjusted Population (previous Census) CMA_UID CSD_UID CD_UID Region Name
## 1                                  3141   24462 2466023   2466    Montréal
## 2                                  5262   24462 2466023   2466    Montréal
## 3                                  3757   24462 2466023   2466    Montréal
## 4                                  4478   24462 2466023   2466    Montréal
## 5                                  5834   24462 2466023   2466    Montréal
## 6                                  2799   24462 2466023   2466    Montréal
##   Area (sq km) lico_at                       geometry
## 1      0.13819     8.6 MULTIPOLYGON (((-73.56392 4...
## 2      0.39316    10.3 MULTIPOLYGON (((-73.57216 4...
## 3      0.19894    27.5 MULTIPOLYGON (((-73.63158 4...
## 4      0.27047    24.0 MULTIPOLYGON (((-73.63313 4...
## 5      0.37836    23.8 MULTIPOLYGON (((-73.61896 4...
## 6      0.22301    24.4 MULTIPOLYGON (((-73.56348 4...
mean_mtl_lico_at_17 <-mean(mtl_lico_at_17$lico_at, na.rm = TRUE)
max_mtl_lico_at_17 <-max(mtl_lico_at_17$lico_at, na.rm = TRUE)
min_mtl_lico_at_17 <-min(mtl_lico_at_17$lico_at, na.rm = TRUE)

mean_mtl_lico_at_17
## [1] 18.06996
max_mtl_lico_at_17 
## [1] 55.7
min_mtl_lico_at_17
## [1] 0

CHILDREN(17<) IN POVERTY (LIM-AT)

mtl<-get_census("CA16",regions=list(CSD="2466023"),geo_format="sf",level="CT") 
mtl_lim_at_17<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lim_at="v_CA16_2543"), geo_format="sf",level="CT") 
head(mtl_lim_at_17)
## Simple feature collection with 6 features and 14 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: -73.63785 ymin: 45.45439 xmax: -73.56055 ymax: 45.5608
## geographic CRS: WGS 84
##   Population Households     GeoUID Type PR_UID Shape Area Dwellings
## 1       3161       1756 4620149.00   CT     24    0.13819      1924
## 2       5217       2756 4620185.00   CT     24    0.39316      2982
## 3       3587       1492 4620222.00   CT     24    0.19894      1634
## 4       4359       1506 4620117.00   CT     24    0.27047      1614
## 5       5729       2592 4620124.00   CT     24    0.37836      2899
## 6       2847       1524 4620306.00   CT     24    0.22301      1635
##   Adjusted Population (previous Census) CMA_UID CSD_UID CD_UID Region Name
## 1                                  3141   24462 2466023   2466    Montréal
## 2                                  5262   24462 2466023   2466    Montréal
## 3                                  3757   24462 2466023   2466    Montréal
## 4                                  4478   24462 2466023   2466    Montréal
## 5                                  5834   24462 2466023   2466    Montréal
## 6                                  2799   24462 2466023   2466    Montréal
##   Area (sq km) lim_at                       geometry
## 1      0.13819   14.3 MULTIPOLYGON (((-73.56392 4...
## 2      0.39316   14.6 MULTIPOLYGON (((-73.57216 4...
## 3      0.19894   34.5 MULTIPOLYGON (((-73.63158 4...
## 4      0.27047   31.6 MULTIPOLYGON (((-73.63313 4...
## 5      0.37836   33.8 MULTIPOLYGON (((-73.61896 4...
## 6      0.22301   30.8 MULTIPOLYGON (((-73.56348 4...
mean_mtl_lim_at_17 <-mean(mtl_lim_at_17$lim_at, na.rm = TRUE)
max_mtl_lim_at_17 <-max(mtl_lim_at_17$lim_at, na.rm = TRUE)
min_mtl_lim_at_17 <-min(mtl_lim_at_17$lim_at, na.rm = TRUE)

mean_mtl_lim_at_17
## [1] 23.74142
max_mtl_lim_at_17 
## [1] 71.3
min_mtl_lim_at_17
## [1] 0
mtl<-get_census("CA16",regions=list(CSD="2466023"),geo_format="sf",level="CT") 
dummy<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(vec_int="v_CA16_2168"), geo_format="sf",level="CT") 
head(dummy)
## Simple feature collection with 6 features and 14 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: -73.63785 ymin: 45.45439 xmax: -73.56055 ymax: 45.5608
## geographic CRS: WGS 84
##   Population Households     GeoUID Type PR_UID Shape Area Dwellings
## 1       3161       1756 4620149.00   CT     24    0.13819      1924
## 2       5217       2756 4620185.00   CT     24    0.39316      2982
## 3       3587       1492 4620222.00   CT     24    0.19894      1634
## 4       4359       1506 4620117.00   CT     24    0.27047      1614
## 5       5729       2592 4620124.00   CT     24    0.37836      2899
## 6       2847       1524 4620306.00   CT     24    0.22301      1635
##   Adjusted Population (previous Census) CMA_UID CSD_UID CD_UID Region Name
## 1                                  3141   24462 2466023   2466    Montréal
## 2                                  5262   24462 2466023   2466    Montréal
## 3                                  3757   24462 2466023   2466    Montréal
## 4                                  4478   24462 2466023   2466    Montréal
## 5                                  5834   24462 2466023   2466    Montréal
## 6                                  2799   24462 2466023   2466    Montréal
##   Area (sq km) vec_int                       geometry
## 1      0.13819     360 MULTIPOLYGON (((-73.56392 4...
## 2      0.39316     380 MULTIPOLYGON (((-73.57216 4...
## 3      0.19894     405 MULTIPOLYGON (((-73.63158 4...
## 4      0.27047     605 MULTIPOLYGON (((-73.63313 4...
## 5      0.37836     490 MULTIPOLYGON (((-73.61896 4...
## 6      0.22301     265 MULTIPOLYGON (((-73.56348 4...
mean_mtl_int <-mean(dummy$vec_int, na.rm = TRUE)
max_mtl_int <-max(dummy$vec_int, na.rm = TRUE)
min_mtl_int <-min(dummy$vec_int, na.rm = TRUE)

mean_mtl_int
## [1] 302.8112
max_mtl_int
## [1] 1315
min_mtl_int
## [1] 55

REFERENCES:

  1. Low income definitions, Statistics Canada
  2. How do we measure poverty? Hannah Aldridge, Maytree Foundation, 2017